目前工業界主流堿性電解槽3000A/m2對應的小室槽壓為1.85V左右,少數新銳產品能達到6000A/m2@1.85V。但是,需要著重提醒的是,雖然大量學術論文中達到了很好的技術指標,但是測試的方法卻達不到工業標準?!肮び破涫卤叵壤淦鳌?,為了快速獲得與工業場景對標的有效數據,就需要在工業標準的復合隔膜堿性電解槽上進行測試。采用工業標準的硬件和方法來測試催化電極,以國內學術界在電解水制氫領域內的規模和實力,研發潛力將被快速激發和釋放,對國內堿性電解槽行業帶來性的貢獻。氫氣因其清潔無污染、熱量高等優點,被譽為21世紀發展前景的清潔能源。安陽PEM電解水制氫技術
陽離子/質子交換膜水電解技術(PEM)該技術是指使用質子(陽離子)交換膜作為固體電解質替代了堿性電解槽使用的隔膜和液態電解質(30%的氫氧化鉀溶液或26%氫氧化鈉溶液),并使用純水作為電解水制氫原料的制氫過程。和堿性電解水制氫技術相比,PEM電解水制氫技術具有電流密度大、氫氣純度高、響應速度快等優點,并且,PEM電解水制氫技術工作效率更高,易于與可再生能源消納相結合,是目前電解水制氫的理想方案。但是由于PEM電解槽需要在強酸性和高氧化性的工作環境下運行,因此設備需要使用含貴金屬(鉑、銥)的電催化劑和特殊膜材料,導致成本過高,使用壽命也不如堿性電解水制氫技術。平頂山附近電解水制氫設備產量在充滿電解液的電解槽中通入直流電,水分子在電極上發生電化學反應,分解成氫氣和氧氣。
三種制氫路線:“成本”短期制約,“可持續”長期。氫氣制備方式主要包括化石燃料制氫、工業副產氫和電解水制氫三類。其中電解水制氫是利用水的電解反應制備氫氣的技術,可再生電力制氫稱為“綠氫”,是零碳排、可持續的“路線”,但目前成本仍是制約其普及的瓶頸因素,其規?;瘧眯枰a業鏈各環節推動降本。影響單位制氫成本的主要因素包括電價、單位電耗、設備單價、運行壽命等因素。隨著后續風光發電LCOE下降、電解槽量產降本、效率提升和壽命增加,電解水制氫成本有望逐步接近工業副產氫甚至煤制氫,實現經濟性。
2023年全球電解水制氫項目開始向大型化、萬噸級發展。據能景研究統計,2023年1月至12月全球新增建成的電解水制氫項目中,千噸級以上氫氣產能的項目數量占比增大,由上一年度同期的約12%提升到了29%。其中,2023年全球至少3項達到了萬噸級氫氣產能,其中規模比較大的是中國中石化新疆庫車綠氫項目,氫氣產能約2萬噸/年,電解槽裝機260MW。另有1萬噸/年氫氣產能項目2項,分別為中國的三峽集團內蒙古納日松光伏制氫項目,電解槽裝機70MW;巴西比較大氮肥企業Unigel位于卡馬薩里的一期綠氨項目(設計產能1萬噸/年),電解槽裝機60MW。生物質制氫技術主要包括熱化學法和生物法兩大類。
我國的氫能產業規劃的相關文件是相對較保守的數據,因為根據目前的一些項目規劃來看,國內的電解水制氫市場的發展和規劃文件來相比有較大差距。氫能聯盟的100GW目標是實現碳中和的重要前提,以此來分析,可以看出:目前國內已有的電解水制氫設備總計產能在1GW左右;到2023年預計有2GW左右的產能;到2025年預計有10GW的產能;到2030年預計有100GW的產能。如果在此基礎上增加國內廠家出口到國外的一些數據,世界所有國家對國內電解水制氫設備的需求量還會有相應的增幅,預計2030年在130GW左右。采用低碳氫不僅能在短期內迅速擴大市場需求,還能有效減少溫室氣體排放。鄭州小型電解水制氫設備銷售
氫燃料汽輪機和氫氣冶金等新興領域也在不斷發展。安陽PEM電解水制氫技術
氫氣,這一無碳綠色新能源,憑借其環保安全、高能量密度、高轉化效率、豐富儲量以及適用性等特點,在應對環境危機和構建清潔低碳能源體系中扮演著至關重要的角色。隨著化石燃料資源的日漸枯竭和能源價格的持續攀升,尋找廉價且儲量豐富的替代能源制氫已成為當務之急。展望未來,生物能、太陽能、風能等可再生能源制氫在21世紀將逐漸嶄露頭角,但就目前而言,從天然氣、甲醇、水等資源中制氫的技術仍相當有競爭力。值得注意的是,煤制氫因對環境和大氣造成嚴重污染而不被本項目考慮,因此不在討論之列。在選擇國內制氫原料路線時,必須綜合考慮原料資源的可獲得性和成本因素。天然氣制氫工藝雖復雜但技術成熟,甲醇制氫流程簡潔且設備常見,而水電解制氫則操作簡便至可實現全自動無人值守。在制氫純度方面,天然氣和甲醇制氫可達到999%,而水電解制氫在純度更高時可達9999%。同時,不同制氫方式對場地條件也有不同要求,例如天然氣制氫需考慮管道或槽車供應的便捷性,甲醇制氫則原料充足、運輸儲存方便,而水電解制氫的場地條件更為寬松。安陽PEM電解水制氫技術