氫能也是一種二次能源。目前,主流的制氫方式主要有化石燃料重整制氫、工業副產氫以及電解水制氫等。化石燃料重整制氫,是以天然氣、煤炭等化石原料,通過蒸汽重整或者部分氧化重整等化學反應,從中提取氫氣,是一種非常重要的制氫方式,但該生產過程中會伴生大量二氧化碳等溫室氣體排放,因此這種方式產出的氫稱為“灰氫”;工業副產氫實際上是“變廢為寶”,是將化工、鋼鐵等工業生產流程里產生的焦爐煤氣、氯堿尾氣等富含氫氣的副產物,經過凈化、提純操作,將氫氣分離提取出來,不過其產量受制于上游工業規模與工況。氫能的利用很多,包括燃料電池移動動力、分布式電站、化工加氫等領域。河北pem電解水制氫技術
水電解制氫有不同的類型,主要根據使用的電解質和傳導的離子種類來區分。常見的有以下幾種:-質子交換膜(PEM)水電解:使用固態聚合物膜作為電解質,傳導H +離子。具有高效率、高純度、低溫度、低壓力等優點,但也有成本高、壽命短、易堵塞等缺點。-堿性水電解:使用液態堿性溶液(如NaOH或KOH)作為電解質,傳導OH -離子。具有成本低、壽命長、穩定性好等優點,但也有效率低、純度差、高溫度、高壓力等缺點。固體氧化物(SOEC)水電解:使用固態陶瓷材料作為電解質,傳導O 2-離子。具有高效率、高純度、可逆性等優點,但也有成本高、壽命短、高溫度(700~800℃)等缺點。赤峰PEM電解水電解水制氫作為目前綠氫制備手段之一,備受世界各國關注。
目前,電解水制氫技術比較成熟,而且水是一種***存在的資源,氫氣也是一種清潔的燃料,并不會產生有害的排放物,所以這是一種可持續的能源生產方式,應用比較***。同時,在電解水制氫的過程,還可以利用來自可再生能源的電力,比如太陽能、風能等,所以,電解水制氫在未來將成為更加環保和可持續的能源生產方式此外,電解水制氫技術的槽體結構簡單、易于操作、價格便宜且技術成熟,已經普遍應用在燃煤電 廠、燃氣電廠和核電廠的氫冷發電機補氫上,能夠持續提供可靠且滿足純度、濕度要求及用量的氫氣。
電解的本質:電能推動電解質溶液中的水分子在電極上發生電化學反應,生成氫氣與氧氣。理論電量:根據法拉第定律,電極反應產物的質量與通入的電量成正比,制取1Nm3氫氣和0.5Nm3氧氣需要的電量為2390Ah,即1mol氫和0.5mol氧的理論電量為53.6Ah。電壓要求:要進行電解,必須在一對電極上加上一定的直流電壓,使電流流過電解槽。U=E+IR+ηH+ηO(操作電壓=水的理論分解電壓+電解電流x電解總電阻+氫超電壓+氧超電壓)。總電阻電壓IR(歐姆損失)由V液、V隔、V極、V接共同組成,當電解材料良好時,操作正常時,后3項影響很小,所以,操作電壓主要包括理論分解電壓、超電壓和電解液電壓損失。極間電壓或小室電壓,一般為1.8~2.5V。通過直接電解純水產生高純氫氣(不加堿),電解池只電解純水即可產氫。
新興電解水制氫技術海水電解制氫:可直接利用海洋資源,但面臨高鹽度、腐蝕性等挑戰。未來應開發抗腐蝕催化劑、適用的交換膜,改進電極結構和電解槽裝置。耦合制氫:通過小分子氧化與析氫反應耦合,降**氫能耗,提高能量效率。未來需深入探究耦合機制,開發經濟環保的技術并集成到可再生能源系統。研究總結與展望電解水制氫技術取得一定進展,但仍面臨諸多挑戰。未來應提升催化劑性能、降低能耗、研制新型設備,以適應可再生能源并網和清潔能源儲存需求,在能源轉型中發揮重要作用。氣液分離裝置將電解產生的氣體與電解液進行分離,得到粗氫。石家莊專業電解水制氫設備
綠氫可在鋼鐵生產中替代目前常用的焦炭作為還原劑。河北pem電解水制氫技術
目前工業界主流堿性電解槽3000A/m2對應的小室槽壓為1.85V左右,少數新銳產品能達到6000A/m2@1.85V。但是,需要著重提醒的是,雖然大量學術論文中達到了很好的技術指標,但是測試的方法卻達不到工業標準。“工欲善其事必先利其器”,為了快速獲得與工業場景對標的有效數據,就需要在工業標準的復合隔膜堿性電解槽上進行測試。采用工業標準的硬件和方法來測試催化電極,以國內學術界在電解水制氫領域內的規模和實力,研發潛力將被快速激發和釋放,對國內堿性電解槽行業帶來性的貢獻。河北pem電解水制氫技術