堿性水電解制氫(ALK)設備技術成熟、投資成本低,是現階段商業運行的主要設備,技術發展向擴大設備規模、提高寬負荷調節能力、保障運行穩定等方向發展。質子交換膜水電解制氫(PEM)設備成本較高,但具有能耗低和運行靈活等優勢,目前技術發展向加大設備功率、提高電流密度和降低成本等方向發展。陰離子交換膜水電解制氫(AEM)兼具PEM的風光耦合以及堿性槽無貴金屬、價格低的特點,但是目前AEM膜壽命仍存不確定性,暫時較難適配工程化需求。固體氧化物水電解制氫(SOEC)具有高效、可逆、材料成本低廉等優點,但在電解堆集成、電解槽堆設計結構優化、電極和封接等材料及技術仍需重點突破。因此,SOEC、AEM等技術目前還有待進一步研發以實現商業化。堿性電解水技術是電解水技術中發現得早的,也是目前電解水技術中成熟的。青島小型電解水制氫設備價格
電解水制氫的操作步驟主要是:第一步,準備電解槽,將兩個電極分別插入水中,保持適當間距,通電后水開始分解。第二步,選擇合適電極,通常是一種不容易被氧化的材料,例如鉑或鎢。第三步,選用合適電流,通電后應選擇合適的電流實現水的電解,電流的大小取決于反應條件和電極的大小。第四步,產氣收集,當電極的電流通過水時,氫氣和氧氣分別分解,并聚集在相應電極周圍,可以用一個導管或管道將產生的氫氣收集起來。第五步,分離氫氣,氫氣可以通過壓縮或直接與空氣相接觸來分離收集。張家口電解水制氫技術綠氫將替代煤成為主要的原料來源。
AEM電解池是組成AEM電解系統的基本單位,多個AEM電解池一起組成了AEM電解模塊。大量的AEM電解模塊和多個輔助系統一起構成了AEM電解水系統。AEM電解模塊與PEM電解槽結構類似,其輔助系統包括氧氣處理和干燥系統、水箱、水處理凈化系統和交流直流轉換器等設備。陰離子交換膜AEM電解池的關鍵組成部分為陰離子交換膜組,由有機陽離子聚合物骨架和共價附著在骨架上的陽離子組成。陰極材料、陽極材料和陰離子交換膜是AEM電解池的,直接影響著AEM電解池的工作效率和設備壽命。
雖然堿性水電解工業化比較成熟,但其缺點也很明顯,首先,效率低,即使有隔膜的存在,陽極生成的氧氣也會擴散到陰極,擴散到陰極的氧氣又被還原成水,使得電解效率變低,而且穿越到陰極的氧氣會帶來很嚴重的安全隱患。其次,電解器能承受的電流密度有限,因為液體電解質和隔膜存在,使得電解器難以在高電流密度的條件下運行。再次,由于采用液體電解質,高壓條件下運行也難以實現,不利于運行管理。雖然堿性電解水技術有明顯的不足,但是其應用成本低,仍是工業應用中的重點。目前越來越多的精力去研究開發堿性條件下的固體電解質聚合物薄膜代替溶液電解質和隔膜,實現堿性離子隔膜水電解(AEMWE,anion exchange membrane water electrocatalysis),能有效彌補傳統堿性水電解的不足。氣液分離裝置將電解產生的氣體與電解液進行分離,得到粗氫。
在直流電作用下,水分子在陰極發生還原反應,生成氫氣和氫氧根離子(OH–),氫氧根離子在電場和氫氧側濃度差的作用下穿過隔膜到達陽極,在陽極一側發生析氧反應,生成氧氣和水。電解槽裝配時浸沒在高濃度(20%~30%)的KOH 溶液中,此時離子電導率比較大,主要缺點是電解液具有腐蝕性,NaOH 和NaCl 溶液也可作電解液,但不常用。堿槽的電解池分成兩個電極,電極將氣密隔膜分開。由于隔膜的阻礙,氫氣和氧氣不會通過隔膜混合在一起,但是電解液卻可以通過隔膜進入另一側。制氫系統運行時,氫氣和堿液的混合液以及氧氣與堿液的混合液分別經過氣水分離器,將氣體和溶液分離,堿液回流至電解槽,氫氣和氧氣分別進入純化裝置提純后進行收集。氫能在非道路運輸領域的應用也在不斷推廣。鄭州pem電解水技術
電解水制氫技術的槽體結構簡單、易于操作、價格便宜且技術成熟。青島小型電解水制氫設備價格
三種制氫路線:“成本”短期制約,“可持續”長期。氫氣制備方式主要包括化石燃料制氫、工業副產氫和電解水制氫三類。其中電解水制氫是利用水的電解反應制備氫氣的技術,可再生電力制氫稱為“綠氫”,是零碳排、可持續的“路線”,但目前成本仍是制約其普及的瓶頸因素,其規模化應用需要產業鏈各環節推動降本。影響單位制氫成本的主要因素包括電價、單位電耗、設備單價、運行壽命等因素。隨著后續風光發電LCOE下降、電解槽量產降本、效率提升和壽命增加,電解水制氫成本有望逐步接近工業副產氫甚至煤制氫,實現經濟性。青島小型電解水制氫設備價格