隨著互聯網的發展,內容生成方式經歷了專業內容生成、用戶生成內容、生成式人工智能三個階段。專業內容生成指內容創作的主體是平臺,平臺雇用的保障內容的專業性,平臺借助專業性的原創內容得到收益,例如,騰訊、優酷、得到等都屬于專業內容生成。圖書館資源與專業內容生成結合,達成了圖書館從數據商購買數字資源數據庫。用戶生成內容指用戶成為內容創作的主體,用戶從內容的消費者變為內容的創作者,例如,微博等分享見聞的圖文平臺,抖音、快手等分享生活的短視頻平臺,豆瓣、知乎等書籍、電影作品的探討交流平臺。圖書館資源與用戶生成內容結合,構成以OPAC書目下的書評、用戶為自己標注的Tag用戶白建生成內容。隨著ChatGPT的出現,生成式人工智能AIGC成功落地,AI成為新的內容創作主體,將圖書館資源與生成式人工智能AIGC結合,可利用Transformer開源模型對圖書館現有文獻進行訓練。依據實時搜索結果Top N篇文獻的篇名和摘要進行文本深度解析,分別生成的中、英文聯想關聯矩陣,即語義腦圖。怎樣智慧導讀服務
面向復雜業務場景智能適配、虛實空間多渠道交互、多元主體協同創新的需求,遵循應用有機集成、平臺開放共享等原則構建人機交互層。人機交互層嵌入視角、觸角、語音、虛實融合等多感官交互模型,構建傳統交互終端以及以服務型機器人為的圖書館智能終端,提供具備泛在感知、全息交互、虛實共生特點的多維交互渠道;按照圖書館數智服務涉及的利益主體分類(主要分公眾、機構、館員),整合各數智服務模塊并利用應用接口及傳輸協議,建設快速響應用戶需求、靈活部署于交互終端的專業門戶,提供融合智慧數據全生命周期管理且覆蓋業務全流程的一站式功能及服務;依托圖書館數智服務能力模型將用戶需求與館內資源進行動態匹配分析,梳理出需求綜合識別、資源深度融合、服務智能供給等圖書館服務場景,提供精細契合各類業務場景的智能化人機交互方案。哪些智慧導讀聯系人大數據環境下圖書館應該把讀者的閱讀行為、身份特征、個人愛好與習慣和社會關系等隱私數據。
近年來人工智能生成內容(AI-GeneratedContent,AIGC)技術實現突破性發展,逐漸成為AI發展的關鍵分支。AIGC技術的迅速發展為各行各業的數字化轉型帶來契機,已被引入傳媒、電商、教育、金融、醫療等行業領域[1]。ChatGPT是AIGC技術的***應用成果[2],掀起了多領域的生成式人工智能熱潮,以其語義理解、多輪對話、敢于質疑等特征引起了學界和業界大量研究者的關注。信息技術是閱讀服務創新的**驅動力,AIGC技術勢必將驅動閱讀服務的變革,促進智慧圖書館等學術平臺的服務創新。學術平臺是學術用戶明晰并滿足閱讀需求的重要支撐。目前,一些學術用戶已開始利用新型學術閱讀平臺尋求和閱讀內容,這將會對用戶學術積累方式產生影響[3]。
智慧導讀面向用戶需求綜合感知、內外部資源高效整合、情報業務數智賦能的需求,聚焦圖書館高度智能化服務,遵循服務泛在化、服務協同化等原則,分場景感知服務模塊、資源整合服務模塊、情報智能服務模塊構建數智服務層。其中,場景感知服務模塊通過智慧數據提供用戶潛在需求挖掘、圖書館內外部環境識別、大數據關聯分析及決策結果預測等能力,實現基本需求及深層需求的多維感知、服務過程的全域感知、服務結果的發展態勢感知,由此提供圖書館各類業務場景下業務主體、業務環境、業務流程、業務規則、業務結果等全要素的識別、分析、預測服務。資源整合服務模塊針對圖書館內紙質文獻、電子圖書等多模態資源,依托智慧數據動態管控業務運維關鍵要素狀態,助力資源、技術、主體等要素間高效整合并充分發揮其協同效應,進而智能化實現包括識別建設、加工處理、調度分配、評價反饋、更新維護的全流程資源整合服務。情報智能服務模塊融合智慧數據實現多源異構數據規范組織及有效優化,嵌入各類情報功能模型及數智技術應用模型提高服務質量并延伸服務邊界,從而提供滿足多主體的數據供給及協同創新需要的多元分層情報智能服務。上海半坡的數字圖書館可以提供給讀者個性化閱讀和文獻知識推薦服務。
智慧數據流轉模塊基于智慧數據演進范式統籌推進圖書館內“原生數據—中間數據—智慧數據”的流通轉化業務,鏈接圖書館內外部數據源的異構原生數據以實現多渠道、全領域的動態數據采集,利用契合各類數據特征的處理方式實現敏捷化的自動數據處理;通過匹配相應數據模態的算法或模型融合多模態數據,以實體、事件、關系為基本單元智能抽取出語義化、結構化的綜合信息,由此實現原生數據向中間數據高效轉化;圖書館業務場景驅動業務流程各節點數據整合,按照標準化的融合數據分析流程獲取深度數據,挖掘出潛在知識并發現知識關聯以提煉通用知識及領域知識,從而實現中間數據向智慧數據有效轉化。信息社會發展下,教育領域的傳統學習方式 和圖書館服務模式。面臨挑戰與機遇。運營智慧導讀價格
智慧導讀可以幫助讀者更好地掌握閱讀技巧。怎樣智慧導讀服務
大數據和人工智能技術極大地推動輔助閱讀智慧化。如表5所示,一方面,進一步優化移動閱讀、數字閱讀的外部語義增強環境。除了提供劃線、高亮顯示、翻譯、對比閱讀等功能以輔助關鍵信息的甄別與標識,還強化語料、引文收集、標簽、手繪等數字筆記和數字注釋功能,增強用戶描述和記錄文本大意的體驗。另一方面,對文獻內容的再生產或再創作,提高閱讀效率,降低認知負荷。在海量數據中“學習”并“理解”內容,對某一主題的相關文獻進行自動綜述,提煉文獻的**內容,AI生成解讀視頻。同時,基于語義關聯關系,提供與文獻相關的數據、代碼、項目、視頻講解等服務。在閱讀理解過程中,以提問的方式要求GPT類平臺自動提煉相關內容,自動實現知識抽取和關系揭示。表6列舉了部分學術平臺的輔助閱讀服務內容及服務形式。當前的輔助閱讀服務適用于撰寫文獻綜述的主題文獻閱讀,也適用于學術檢索任務和積累任務,但仍需要配合人工精讀的方式學習特定的方法和理論知識點。怎樣智慧導讀服務