發(fā)貨地點:江蘇省蘇州市
發(fā)布時間:2025-07-28
在實際應(yīng)用中,這款設(shè)備已成為半導(dǎo)體產(chǎn)業(yè)鏈的 “故障診斷利器”。在晶圓制造環(huán)節(jié),它能通過熱分布成像識別光刻缺陷導(dǎo)致的局部漏電;在芯片封裝階段,可定位引線鍵合不良引發(fā)的接觸電阻過熱;針對 IGBT 等功率器件,能捕捉高頻開關(guān)下的瞬態(tài)熱行為,提前預(yù)警潛在失效風(fēng)險。某半導(dǎo)體企業(yè)在檢測一批失效芯片時,傳統(tǒng)熱成像設(shè)備能看到模糊的發(fā)熱區(qū)域,而使用致晟光電的一體化設(shè)備后,通過鎖相技術(shù)發(fā)現(xiàn)發(fā)熱區(qū)域內(nèi)存在一個 2μm 的微小熱點,終定位為芯片內(nèi)部的金屬離子遷移缺陷 一一 這類缺陷若未及時發(fā)現(xiàn),可能導(dǎo)致產(chǎn)品在長期使用中突然失效。鎖相熱成像系統(tǒng)提升電激勵檢測的缺陷識別率。芯片用鎖相紅外熱成像系統(tǒng)聯(lián)系人
鎖相熱成像系統(tǒng)借助電激勵在電子產(chǎn)業(yè)的微型電子元件檢測中展現(xiàn)出極高的靈敏度,滿足了電子產(chǎn)業(yè)向微型化、高精度發(fā)展的需求。隨著電子技術(shù)的不斷進(jìn)步,電子元件正朝著微型化方向快速發(fā)展,如微型傳感器、微型繼電器等,其尺寸通常在毫米甚至微米級別,缺陷也更加細(xì)微,傳統(tǒng)的檢測方法難以應(yīng)對。電激勵能夠在微型元件內(nèi)部產(chǎn)生微小但可探測的溫度變化,即使是納米級的缺陷也能引起局部溫度的細(xì)微波動。鎖相熱成像系統(tǒng)結(jié)合先進(jìn)的鎖相技術(shù),能夠從強(qiáng)大的背景噪聲中提取出與電激勵同頻的溫度信號,將微小的溫度變化放大并清晰顯示出來,從而檢測出微米級的缺陷。例如,在檢測微型加速度傳感器的敏感元件時,系統(tǒng)能夠發(fā)現(xiàn)因制造誤差導(dǎo)致的微小結(jié)構(gòu)變形,這些變形會影響傳感器的測量精度。這一技術(shù)的應(yīng)用,為微型電子元件的質(zhì)量檢測提供了有力支持,推動了電子產(chǎn)業(yè)向微型化、高精度方向不斷發(fā)展。直銷鎖相紅外熱成像系統(tǒng)品牌排行鎖相熱成像系統(tǒng)讓電激勵檢測更具實用價值。
電激勵的鎖相熱成像系統(tǒng)在電子產(chǎn)業(yè)的柔性電子檢測中展現(xiàn)出廣闊的應(yīng)用前景,為柔性電子技術(shù)的發(fā)展提供了關(guān)鍵的質(zhì)量控制手段。柔性電子具有可彎曲、重量輕、便攜性好等優(yōu)點,廣泛應(yīng)用于柔性顯示屏、柔性傳感器、可穿戴設(shè)備等領(lǐng)域。然而,柔性電子材料通常較薄且易變形,傳統(tǒng)的機(jī)械檢測或接觸式檢測方法容易對其造成損傷。電激勵方式在柔性電子檢測中具有獨特優(yōu)勢,可采用低電流的周期性激勵,避免對柔性材料造成破壞。鎖相熱成像系統(tǒng)能夠通過檢測柔性電子內(nèi)部線路的溫度變化,識別出線路斷裂、層間剝離、電極脫落等缺陷。例如,在柔性顯示屏的檢測中,系統(tǒng)可以對顯示屏施加低電流電激勵,通過分析溫度場分布,發(fā)現(xiàn)隱藏在柔性基底中的細(xì)微線路缺陷,確保顯示屏的顯示效果和使用壽命。這一技術(shù)的應(yīng)用,有效保障了柔性電子產(chǎn)品的質(zhì)量,推動了電子產(chǎn)業(yè)中柔性電子技術(shù)的快速發(fā)展。
致晟光電熱紅外顯微鏡采用高性能InSb(銦銻)探測器,用于中波紅外波段(3–5 μm)的熱輻射信號捕捉。InSb材料具有優(yōu)異的光電轉(zhuǎn)換效率和極低的本征噪聲,在制冷條件下可實現(xiàn)高達(dá)nW級的熱靈敏度和優(yōu)于20mK的溫度分辨率,適用于高精度、非接觸式熱成像分析。該探測器在熱紅外顯微系統(tǒng)中的應(yīng)用,提升了空間分辨率(可達(dá)微米量級)與溫度響應(yīng)線性度,使其能夠?qū)Π雽?dǎo)體器件、微電子系統(tǒng)中的局部發(fā)熱缺陷、熱點遷移和瞬態(tài)熱行為進(jìn)行精細(xì)刻畫。配合致晟光電自主開發(fā)的高數(shù)值孔徑光學(xué)系統(tǒng)與穩(wěn)態(tài)熱控平臺,InSb探測器可在多物理場耦合背景下實現(xiàn)高時空分辨的熱場成像,是先進(jìn)電子器件失效分析、電熱耦合行為研究及材料熱特性評價中的關(guān)鍵。電激勵的波形選擇(正弦波、方波等)會影響熱信號的特征,鎖相熱成像系統(tǒng)需針對不同波形優(yōu)化處理算法。
當(dāng)電子設(shè)備中的某個元件發(fā)生故障或異常時,常常伴隨局部溫度升高。熱紅外顯微鏡通過高靈敏度的紅外探測器,能夠捕捉到極其微弱的熱輻射信號。這些探測器通常采用量子級聯(lián)激光器等先進(jìn)技術(shù),或其他高性能紅外傳感方案,具備寬溫區(qū)、高分辨率的成像能力。通過對熱輻射信號的精細(xì)探測與分析,熱紅外顯微鏡能夠?qū)㈦娮釉O(shè)備表面的溫度分布以高對比度的熱圖像形式呈現(xiàn),直觀展現(xiàn)熱點區(qū)域的位置、尺寸及溫度變化趨勢,從而幫助工程師快速鎖定潛在的故障點,實現(xiàn)高效可靠的故障排查。電激勵作為一種能量輸入方式,能激發(fā)物體內(nèi)部熱分布變化,為鎖相熱成像系統(tǒng)捕捉細(xì)微溫差提供熱源基礎(chǔ)。顯微紅外成像鎖相紅外熱成像系統(tǒng)儀器
電激勵頻率可調(diào),適配鎖相熱成像系統(tǒng)多場景檢測。芯片用鎖相紅外熱成像系統(tǒng)聯(lián)系人
從技術(shù)原理來看,該設(shè)備構(gòu)建了一套完整的 “熱信號捕捉 - 解析 - 成像” 體系。其搭載的高性能探測器(如 RTTLIT P20 采用的 100Hz 高頻深制冷型紅外探測器)能敏銳捕捉中波紅外波段的熱輻射,配合 InGaAs 微光顯微鏡模塊,可同時實現(xiàn)熱信號與光子發(fā)射的同步觀測。在檢測過程中,設(shè)備先通過熱紅外顯微鏡快速鎖定可疑區(qū)域,再啟動 RTTLIT 系統(tǒng)的鎖相功能:施加周期性電信號激勵后,缺陷會產(chǎn)生與激勵頻率同步的微弱熱響應(yīng),鎖相模塊過濾掉環(huán)境噪聲,將原本被掩蓋的熱信號放大并成像。這種 “先定位、再聚焦” 的模式,既保證了檢測效率,又突破了傳統(tǒng)設(shè)備對微弱信號的檢測極限。芯片用鎖相紅外熱成像系統(tǒng)聯(lián)系人